首页 | 本学科首页   官方微博 | 高级检索  
     


Intelligent fault inference for rotating flexible rotors using Bayesian belief network
Authors:Bin Gang Xu
Affiliation:Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Abstract:
Flexible rotor is a crucial mechanical component of a diverse range of rotating machineries and its condition monitoring and fault diagnosis are of particular importance to the modern industry. In this paper, Bayesian belief network (BBN) is applied to the fault inference for rotating flexible rotors with attempt to enhance the reasoning capacity under conditions of uncertainty. A generalized three-layer configuration of BBN for the fault inference of rotating machinery is developed by fully incorporating human experts’ knowledge, machine faults and fault symptoms as well as machine running conditions. Compared with the Naive diagnosis network, the proposed topological structure of causalities takes account of more practical and complete diagnostic information in fault diagnosis. The network tallies well with the practical thinking of field experts in the whole processes of machine fault diagnosis. The applications of the proposed BBN network in the uncertainty inference of rotating flexible rotors show good agreements with our knowledge and practical experience of diagnosis.
Keywords:Fault diagnosis   Bayesian belief network   Flexible rotor   Uncertainty inference
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号