摘 要: | 为了有效地获取步态连续性的动态特征,快速准确地进行身份识别.特提出了一个基于步态能量图(Gait Energy Image,GEI)和核Fisher判别分析(Kernel-based Fisher Discrimination Analysis,KFDA)的分类识别算法.算法首先以步态能量图(GEI)按列向量作为输入,求得最优子空间W_(opt)和α_(opt).利用提取步态能量图(GEI)的步态信息向量计算在α_(opt)上的投影,并计算其投影轨迹.在分类阶段,采用最近邻分类器(Nearest neighbor classifier).最终在中科院自动化研究所CASIA B步态数据库上进行实验,对比多项式、高斯径向基核函数和其他四种算法的结果显示,本文算法取得了较高的识别率.
|