首页 | 本学科首页   官方微博 | 高级检索  
     


Toughening of polyamide 6 with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene–propylene–diene rubber grafted with maleic anhydride blends
Affiliation:1. Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand;2. Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, PR China;3. Research and Development Center, Innovation Group (Thailand) Company Limited, Bangkok, 10240, Thailand;4. Faculty of Science and Industrial Technology, Prince of Songkla University, Suratthani Campus, Suratthani, 84000, Thailand
Abstract:The toughening of polyamide 6 (PA 6) with β-nucleated thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene–propylene–diene rubber grafted with maleic anhydride (EPDM-g-MAH) blends was studied. A series of TPVs without and with different dosage of β-nucleating agent (β-NA) were prepared and used to toughen PA 6 at the same proportion. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) measurements showed that β crystals of PP were effectively induced in the TPVs. The PA 6 blends toughened with β-nucleated TPVs (β-TPVs) exhibit significantly enhanced toughness, balanced mechanical properties and thermal properties compared with PA 6 toughened by TPV without β-NA or only by EPDM-g-MAH. Phase morphologies of the blends characterized by scanning electron microscopy (SEM) showed that better interfacial adhesion caused by the migration of β-NA from PP to PA 6/PP interface and PP/EPDM-g-MAH interface gives rise to more uniform dispersion and smaller size of the dispersed phase; moreover, the core–shell structure comprised of rubber particles enveloped by PP on the surface, brings about easier and stronger interference of the stress field of EPDM phase.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号