首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应蚁群算法的AGV路径规划优化
作者姓名:刘礼  刘勇  孙云权  郭涛
作者单位:四川轻化工大学自动化与信息工程学院 宜宾 644000
基金项目:四川省转移支付重点研发项目(21ZYZFZDYF0021)资助
摘    要:针对传统蚁群算法在AGV路径规划中存在拐点数目较多,运行能耗较高等问题,提出一种改进的自适应蚁群算法。首先采用自适应参数调整方法,在迭代过程中不断调整信息素浓度和启发式信息的相对重要性,以增强蚂蚁搜索的目的性;其次引入多目标路径性能评价指标,在路径长度的单一指标基础上引入路径风险指标和拐点数目,以实现AGV路径规划的全局综合优化;然后提出一种奖惩机制更新信息素增量,针对不同程度评价指标的路径提供不同的信息素更新规则,避免算法陷入早熟;最后引入准均匀三次B样条平滑策略,进一步优化最优解。在20×20和30×30不同复杂程度的环境下进行仿真实验,本文改进算法相比传统蚁群算法在转弯次数上减少了113%~382%,在收敛速度上提升了798%~879%,验证了本文改进算法的有效性、可行性和优越性。

关 键 词:路径规划  蚁群算法  AGV  多目标评价指标  B样条曲线平滑策略
点击此处可从《电子测量技术》浏览原始摘要信息
点击此处可从《电子测量技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号