摘 要: | 针对传统蚁群算法在AGV路径规划中存在拐点数目较多,运行能耗较高等问题,提出一种改进的自适应蚁群算法。首先采用自适应参数调整方法,在迭代过程中不断调整信息素浓度和启发式信息的相对重要性,以增强蚂蚁搜索的目的性;其次引入多目标路径性能评价指标,在路径长度的单一指标基础上引入路径风险指标和拐点数目,以实现AGV路径规划的全局综合优化;然后提出一种奖惩机制更新信息素增量,针对不同程度评价指标的路径提供不同的信息素更新规则,避免算法陷入早熟;最后引入准均匀三次B样条平滑策略,进一步优化最优解。在20×20和30×30不同复杂程度的环境下进行仿真实验,本文改进算法相比传统蚁群算法在转弯次数上减少了113%~382%,在收敛速度上提升了798%~879%,验证了本文改进算法的有效性、可行性和优越性。
|