首页 | 本学科首页   官方微博 | 高级检索  
     

基于CRNN混合神经网络的多语种识别
作者姓名:王瑶  龙华  邵玉斌  杜庆治  王延凯
作者单位:昆明理工大学 信息工程与自动化学院,云南 昆明 650500,昆明理工大学 信息工程与自动化学院,云南 昆明 650500,昆明理工大学 信息工程与自动化学院,云南 昆明 650500,昆明理工大学 信息工程与自动化学院,云南 昆明 650500,昆明理工大学 信息工程与自动化学院,云南 昆明 650500
基金项目:国家自然科学基金(61761025)资助项目
摘    要:在语种识别过程中,为提取语音信号中的空间特 征以及时序特征,从而达到提高多语 种识别准确率的目的,提出了一种利用卷积循环神经网络(convolutional recurrent neural network,CRNN)混合神经网络的多语种识别模型。该模型首先提 取语音信号的声学特征;然后将特征输入到卷积神经网络(convolutional neural network,CNN) 提取低维度的空间特征;再通过空 间金字塔池化层(spatial pyramid pooling layer,SPP layer) 对空间特征进行规整,得到固定长度的一维特征;最后将其输入到循环神经 网络(recurrenrt neural network,CNN) 来判别语种信息。为验证模型的鲁棒性,实验分别在3个数据集上进行,结果表明:相 比于传统的CNN和RNN,CRNN混合神经网络对不同数据集的语种识别 准确率均有提高,其中在8语种数据集中时长为5 s的语音上最为明显,分别提高了 5.3% 和6.1%。

关 键 词:语种识别  卷积循环神经网络混合神经网络  卷积神经网络  循环神经网络
收稿时间:2021-09-06
修稿时间:2021-09-28
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号