首页 | 本学科首页   官方微博 | 高级检索  
     


A nonlinear system model for electrospinning sub-100 nm polyacrylonitrile fibres
Authors:Costolo M A  Lennhoff J D  Pawle R  Rietman E A  Stevens A E
Affiliation:Physical Sciences Incorporated, 20 New England Business Center, Andover, MA 01810-1077, USA.
Abstract:Solutions of polyacrylonitrile (PAN) were electrospun using a range of process parameters, resulting in fibre diameters from 10 to 320?nm. A nonlinear neural network system model was used to analyse the dependence of the fibre diameter on the process parameters, and used to simulate conditions for electrospinning 40-60?nm diameter fibres. These results indicated that flow rate is most important for determining fibre diameter. It was not possible to find the appropriate conditions for electrospinning sub-25?nm fibres. Precise control of the ambient temperature and relative humidity will be critical to producing electrospun fibres that are sub-25?nm. Further, it is unlikely that sub-25?nm fibres will be produced without significant changes in the electrospinning apparatus, for example, by use of focusing and jet-steering fields, alternate carrier gases to modify the discharge characteristics, or patterned electrospinning.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号