首页 | 本学科首页   官方微博 | 高级检索  
     


The microstructure,ferroelectric and dielectric behaviors of Na0.5Bi0.5(Ti,Fe)O3 thin films synthesized by chemical solution deposition: Effect of precursor solution concentration
Affiliation:1. School of Material Science and Engineering, University of Jinan, Jinan 250022, China;2. Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China;1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China;2. National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001, PR China;1. School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China;2. Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China;1. School of Materials Science and Engineering, University of Jinan, Jinan 250022, China;2. Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China;1. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China;2. College of Physics and Technology, Inner Mongolia University, Hohhot 010020, China;1. Inner Mongolia Key Laboratory of Ferroelectric-related New Energy Materials and Devices, School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China;2. Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi 030051, China
Abstract:Fe-doped Na0.5Bi0.5TiO3 (NBTFe) thin films were prepared directly on indium tin oxide/glass substrates using a chemical solution deposition method combined with sequential layer annealing. The X-ray diffraction, scanning electron microscopy and insulating/ferroelectric/dielectric measurements were utilized to characterize the NBTFe thin films. All the NBTFe thin films prepared by four precursor solutions with various concentrations of 0.05, 0.10, 0.20 and 0.30 M exhibit polycrystalline perovskite structures with different relative intensities of (l00) peaks. A large remanent polarization (Pr) of 33.90 μC/cm2 can be obtained in NBTFe film derived with 0.10 M spin-on solution due to its lower leakage current and larger grain size compared to those of other samples. Also, it shows a relatively symmetric coercive field and large dielectric tunability of 36.34%. Meanwhile, the NBTFe thin film with 0.20 M has a high energy-storage density of 30.15 J/cm3 and efficiency of 61.05%. These results indicate that the electrical performance can be controlled by optimizing the solution molarity.
Keywords:Thin films  Chemical synthesis  Solution concentration  Microstructure  Electrical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号