首页 | 本学科首页   官方微博 | 高级检索  
     


An ultra-low power energy-efficient microsystem for hydrogen gas sensing applications
Authors:Naser Khosro Pour  François Krummenacher  Maher Kayal
Affiliation:1. Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
Abstract:This paper presents a fully integrated power management and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a miniaturized hydrogen sensor. In order to measure H2 concentration, conductance change of a miniaturized palladium nanowire sensor is measured and converted to a 13-bit digital value using a fully integrated sensor interface circuit. As these nanowires have temperature cross-sensitivity, temperature is also measured using an integrated temperature sensor for further calibration of the gas sensor. Measurement results are transmitted to the base station, using an external wireless data transceiver. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. As the harvested solar energy varies considerably in different lighting conditions, the power consumption and performance of the sensor is reconfigured according to the harvested solar energy, to guarantee autonomous operation of the sensor. For this purpose, the proposed energy-efficient power management circuit dynamically reconfigures the operating frequency of digital circuits and the bias currents of analog circuits. The fully integrated power management and sensor interface circuits have been implemented in a 0.18 μm CMOS process with a core area of 0.25 mm2. This circuit operates with a low supply voltage in the 0.9–1.5 V range. When operating at its highest performance, the power management circuit features a low power consumption of less than 300 nW and the whole sensor consumes 14.1 μA.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号