首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的神经网络机械故障诊断专家系统
引用本文:彭滔,汪鲁才,吴桂清,张颖. 一种改进的神经网络机械故障诊断专家系统[J]. 计算机工程与应用, 2007, 43(1): 232-234
作者姓名:彭滔  汪鲁才  吴桂清  张颖
作者单位:湖南师范大学,工学院,长沙,410081;湖南大学,电气与信息工程学院,长沙,410082
摘    要:针对传统BP神经网络训练中收敛速度较慢的缺点,提出一种基于L-M算法的神经网络应用于机械设备故障诊断的专家系统。论述了神经网络的专家系统结构,并以7216圆锥轴承试验研究为例,建立了基于该算法的故障诊断模型。仿真结果表明:该模型显著缩短了训练时间,具有较高的准确性。运用该神经网络专家系统进行机械故障诊断是有效的。

关 键 词:神经网络  L-M算法  专家系统  故障诊断
文章编号:1002-8331(2007)01-0232-03
修稿时间:2006-04-01

Improved expert system for mechanical fault diagnosis based on L-M neural network
PENG Tao,WANG Lu-cai,WU Gui-qing,ZHANG Ying. Improved expert system for mechanical fault diagnosis based on L-M neural network[J]. Computer Engineering and Applications, 2007, 43(1): 232-234
Authors:PENG Tao  WANG Lu-cai  WU Gui-qing  ZHANG Ying
Affiliation:1.Polytechnic College, Hunan Normal University,Changsha 410081, China; 2.College of Electrical and Information Engineering,Hunan University,Changsha 410082,China
Abstract:An improved neural network based on L-M algorithm has been applied to fault diagnosis expert system against to the slow convergence rate of conventional BP neural network.The expert system structure based on neural network has been introduced,and a fault diagnosis model has been designed combining with 7216 tapered bearings experiment.Simulation results indicate this model can remarkably reduce the training time,with its relatively high accuracy,surpass the conventional BP neural network model.It is feasible for mechanical fault diagnosis.
Keywords:neural network    L-M algorithm   expert system   fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号