融合邻域模型与矩阵分解模型的推荐算法 |
| |
作者姓名: | 张航 叶东毅 |
| |
作者单位: | 福州大学 数学与计算机科学学院, 福州 350108,福州大学 数学与计算机科学学院, 福州 350108 |
| |
基金项目: | 河南省重点科技攻关项目(142102210225) |
| |
摘 要: | 协同过滤推荐算法是目前构建推荐系统最为成功的算法之一,它利用已知的一组用户对物品喜好数据来对推测用户对其他物品的喜好,其中,能够直接刻画用户与项目潜在特征的矩阵分解模型和通过分析物品或者项目间相似度的邻域模型是研究的热点.针对这两个模型存在的不足,提出了一种将邻域模型与矩阵分解模型有效结合的方法,进而构建了一个改进的协同过滤推荐算法,提高了预测准确性.实验结果验证了改进算法的正确性与有效性.
|
关 键 词: | 推荐系统 协同过滤 矩阵分解模型 邻域模型 |
收稿时间: | 2015-10-10 |
修稿时间: | 2015-12-02 |
|
| 点击此处可从《计算机系统应用》浏览原始摘要信息 |
|
点击此处可从《计算机系统应用》下载免费的PDF全文 |
|