The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons |
| |
Authors: | Huan Meng Guiquan Chen Hui-Ming Gao Xiaoyu Song Yun Shi Liu Cao |
| |
Affiliation: | 1Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; E-Mail: (X.S.);2Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China; E-Mails: (G.C.); (H.-M.G.); (Y.S.) |
| |
Abstract: | The variable patterns of DNA methylation in mammals have been linked to a number of physiological processes, including normal embryonic development and disease pathogenesis. Active removal of DNA methylation, which potentially regulates neuronal gene expression both globally and gene specifically, has been recently implicated in neuronal plasticity, learning and memory processes. Model pathways of active DNA demethylation involve ten-eleven translocation (TET) methylcytosine dioxygenases that are dependent on oxidative metabolites. In addition, reactive oxygen species (ROS) and oxidizing agents generate oxidative modifications of DNA bases that can be removed by base excision repair proteins. These potentially link the two processes of active DNA demethylation and mitochondrial oxidative metabolism in post-mitotic neurons. We review the current biochemical understanding of the DNA demethylation process and discuss its potential interaction with oxidative metabolism. We then summarise the emerging roles of both processes and their interaction in neural plasticity and memory formation and the pathophysiology of neurodegeneration. Finally, possible therapeutic approaches for neurodegenerative diseases are proposed, including reprogramming therapy by global DNA demethylation and mitohormesis therapy for locus-specific DNA demethylation in post-mitotic neurons. |
| |
Keywords: | active DNA demethylation mitochondrial oxidative metabolism TET (ten-eleven translocation) methylcytosine dioxygenases post-mitotic neurons neurodegeneration |
|
|