首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征融合的步态识别
引用本文:陈华,史思思,胡春海. 基于特征融合的步态识别[J]. 无线电工程, 2012, 42(2): 25-27
作者姓名:陈华  史思思  胡春海
作者单位:河北省测试计量技术与仪器重点实验室,河北秦皇岛,066004
基金项目:河北省自然科学基金资助项目(F2011203117)
摘    要:基于人行走时下肢关节角度变化包含丰富的个体识别信息的观点,提出了一种利用下肢关节角度进行识别的方法。利用下肢关节角度来表征步态运动的动态特征,并用主分量分析进行特征提取来表征步态的静态特征,其次融合步态运动中的静态特征和动态特征,采用对小样本具有很好分类效果的支持向量机进行分类识别。对算法进行MATLAB仿真,结果表明所用方法具有较高的识别性能。

关 键 词:步态识别  特征融合  主分量分析(PCA)  下肢关节角度  支持向量机(SVM)

Research on Gait Recognition Based on Feature Fusion
CHEN Hua,SHI Si-si,HU Chun-hai. Research on Gait Recognition Based on Feature Fusion[J]. Radio Engineering of China, 2012, 42(2): 25-27
Authors:CHEN Hua  SHI Si-si  HU Chun-hai
Affiliation:(Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Qinhuangdao Hebei 066004,China)
Abstract:Based on the idea that lower limb angles of motion body contain rich information of human identificadon,a gait recognition method based on lower limb angles was proposed.The joint points of the human body can be a good characterization of gait characteristics,so a new algorithm is proposed in this paper.We describe the dynamic characteristics with joint angles of low limb,and PCA for feature extraction to characterize the static features,integration of static characteristics and dynamic characteristics,and use SVM for classification and recognition.The results show that the method has a high recognition performance.
Keywords:gait recognition  feature fusion  principal component analysis  joint angle  support vector machine
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号