首页 | 本学科首页   官方微博 | 高级检索  
     

土体干缩开裂过程的边界效应试验与离散元模拟
引用本文:林朱元,唐朝生,曾浩,王怡舒,程青,施斌.土体干缩开裂过程的边界效应试验与离散元模拟[J].岩土工程学报,1979,42(2):372-380.
作者姓名:林朱元  唐朝生  曾浩  王怡舒  程青  施斌
作者单位:1. 南京大学地球科学与工程学院,江苏 南京 210023;2. 河海大学水利水电学院,江苏 南京 210024
基金项目:国家杰出青年科学基金项目(41925012);国家自然科学基金项目(41572246,41772280,41902271);江苏省自然科学基金项目(BK20171228,BK20170394);中央高校基本科研业务费专项资金项目
摘    要:为了探究土体干缩开裂过程的边界效应问题,采用不同底面粗糙度的容器开展了多组干燥试验,发现干缩裂隙存在从顶面向下和从底面向上两种典型的发育形式。并且,裂隙发育程度与土样/容器界面接触条件密切相关,从而验证了裂隙发育过程的边界效应。通过理论分析,阐明了上边界的蒸发条件及下边界的接触条件对裂隙发育形式的控制作用。为了能更深入地理解土体干缩开裂边界效应的内在机制,在试验的基础上建立离散元模型,创新性地引入了沿深度的失水速率梯度参数,模拟土样上边界的蒸发条件变化。通过设置底面摩擦系数,模拟土样下边界的接触条件变化。将模拟结果与试验结果进行了对比分析,发现二者具有较好的吻合度。总体上,土体干缩裂隙的发育过程是顶面蒸发失水与底面摩擦两种边界条件共同作用的结果。当底面摩擦系数相对较小时,裂隙发育由蒸发失水主导,大部分裂隙由顶面向下发育。随着底面摩擦系数的增加,底面接触条件对裂隙发育过程的主导作用逐渐增强,由底面向上发育的裂隙数量所占比重也相应增加。

关 键 词:干缩开裂  边界条件  离散元模拟  底面摩擦  蒸发失水  
收稿时间:2019-03-28

Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions
LIN Zhu-yuan,TANG Chao-sheng,ZENG Hao,WANG Yi-shu,CHENG Qing,SHI Bin.Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J].Chinese Journal of Geotechnical Engineering,1979,42(2):372-380.
Authors:LIN Zhu-yuan  TANG Chao-sheng  ZENG Hao  WANG Yi-shu  CHENG Qing  SHI Bin
Affiliation:1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China
Abstract:In order to explore the boundary effect of the desiccation cracking process, multiple sets of drying tests are carried out using the containers with different bottom roughnesses. Two different forming patterns can be observed in the laboratory tests, initiating from the top/bottom, and there is propagation closely related to the sample/container interface contact conditions. This verifies the boundary effect of the crack propagation. In order to understand the internal mechanism of the desiccation boundary effect of the soils more deeply, a discrete element model is established based on the drying tests. A water loss rate gradient parameter along the depth is introduced innovatively to simulate the change of the evaporation condition of the upper boundary of the soil samples. By setting the friction coefficient of the bottom surface, the contact condition of the lower boundary of the sample is simulated. The simulated results are compared with the experimental ones and found to have good agreement. In general, the initiation and propagation of desiccation cracks are the result of the combination of water loss due to surface evaporation and bottom friction. When the coefficient of friction of the bottom surface is relatively small, the development of the fracture is dominated by water loss, and most of the fractures develop from the top surface. With the increase of the friction coefficient of the bottom surface, the effect of the contact condition of the bottom surface on the development of the crack gradually increase, and the proportion of the number of cracks developed from the bottom surface increases accordingly.
Keywords:desiccation cracking  boundary conditions  DEM  bottom friction  evaporation  
点击此处可从《岩土工程学报》浏览原始摘要信息
点击此处可从《岩土工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号