首页 | 本学科首页   官方微博 | 高级检索  
     

基于通信信号时频特性的卷积神经网络调制识别
引用本文:徐茂,侯进,吴佩军,刘雨灵,吕志良. 基于通信信号时频特性的卷积神经网络调制识别[J]. 计算机科学, 2020, 47(2): 175-179
作者姓名:徐茂  侯进  吴佩军  刘雨灵  吕志良
作者单位:西南交通大学信息科学与技术学院 成都 611756;西南交通大学信息科学与技术学院 成都 611756;西南交通大学信息科学与技术学院 成都 611756;西南交通大学信息科学与技术学院 成都 611756;西南交通大学信息科学与技术学院 成都 611756
基金项目:浙江大学CAD&CG国家重点实验室开放课题;成都市科技项目
摘    要:在通信环境日益密集、信号调制样式层出不穷的情况下,信号的调制识别变得愈加困难。寻求一种高精度、时效性好的自动调制识别新方法,对无线电通信应用领域有重大意义。对此,文中提出了一种结合通信信号时频特性的卷积神经网络(Convolutional Neural Network Based on Time-Frequency Characteristics,TFC-CNN)调制识别算法。首先,采集大量调制信号,将信号的时频特征通过短时傅里叶变换转换成图像特征,并将其作为网络的输入;然后,设计一种特征提取能力更强、参数更少的卷积神经网络,通过改进网络中不同层的连结方式来增加网络的特征提取能力,同时通过减小卷积核的尺度、使用全局均值池化层来减少模型参数,提高了模型的时效性;最后,在网络中添加批归一化(Batch Normalization,BN)层,在增加模型稳定性的同时防止模型出现过拟合。实验结果表明,所提算法在参数和训练时间上比传统方法明显减少,同时有更高的准确率,体现了所提算法的优越性。

关 键 词:调制识别  时频特性  卷积神经网络  短时傅里叶变换

Convolutional Neural Networks Based on Time-Frequency Characteristics for Modulation Classification
XU Mao,HOU Jin,WU Pei-jun,LIU Yu-ling,LV Zhi-liang. Convolutional Neural Networks Based on Time-Frequency Characteristics for Modulation Classification[J]. Computer Science, 2020, 47(2): 175-179
Authors:XU Mao  HOU Jin  WU Pei-jun  LIU Yu-ling  LV Zhi-liang
Affiliation:(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
Abstract:In the situation of increasingly dense communication environment and endless modulation patterns of signals,the modu-lation classification becomes more and more difficult.It is very important for the application of radio communication to seek a new method of automatic modulation classification(AMC)with high accuracy and good timeliness.Based on this,a novel convolutio-nal neural network based ontime-frequency characteristics(TFC-CNN)for AMC was proposed.Firstly,a large number of modulation signals are collected,and the time-frequency features of the signals are converted into image features by short-time Fourier transform,which are used as the input of the network.Secondly,a convolutional neural network with stronger feature extraction ability and fewer parameters is designed,and the feature extraction ability of the network is enhanced by improving the connection mode of different layers in the network.At the same time,the model parameters are reduced by reducing the scale of the convolution kernel and using the global average pooling,the timeliness of the model is improved.Finally,adding batch normali zation layers to network can increase the stability of the model and prevent overfitting.The experimentresults show that the proposed algorithm is significantly lessin parameters and training time than the traditional methods,and has higher accuracy,which shows the superiority of the proposed algorithm.
Keywords:Modulation classification  Time frequency characteristics  Convolutional neural network  Short-time Fourier transform
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号