首页 | 本学科首页   官方微博 | 高级检索  
     


A learning result for continuous-time recurrent neural networks
Authors:Eduardo D. Sontag
Abstract:The following learning problem is considered, for continuous-time recurrent neural networks having sigmoidal activation functions. Given a “black box” representing an unknown system, measurements of output derivatives are collected, for a set of randomly generated inputs, and a network is used to approximate the observed behavior. It is shown that the number of inputs needed for reliable generalization (the sample complexity of the learning problem) is upper bounded by an expression that grows polynomially with the dimension of the network and logarithmically with the number of output derivatives being matched.
Keywords:Recurrent neural networks   System identification   Computational learning theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号