首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous four-color imaging of single molecule fluorophores using dichroic mirrors and four charge-coupled devices
Authors:Haga Takanobu  Sonehara Tsuyoshi  Sakai Tomoyuki  Anazawa Takashi  Fujita Takeshi  Takahashi Satoshi
Affiliation:Central Research Laboratory, Hitachi, Ltd., Tokyo, Japan.
Abstract:We developed a total-internal-reflection (TIR) fluorescence microscopy using three dichroic mirrors and four charge-coupled devices (CCDs) to detect simultaneously four colors of single-molecule (SM) fluorophores. Four spectrally distinct species of fluorophores (Alexa 488, Cy3, Cy5, or Cy5.5) were each immobilized on a different fused silica slide. A species of fluorophores on the slide was irradiated simultaneously, by two excitation beams from an Ar ion laser (488 and 514.5 nm) and a diode laser (642 nm) through TIR on the slide surface. Fluorescence emitted from the fluorophores was spectrally resolved into four components by the dichroic mirrors, and four images were generated from them simultaneously and continuously, with the four CCDs at a rate of 10 Hz. A series of images was thus obtained with each CCD. Fluorescence spots for a species were observed mainly in the series of images recorded by its respective-color CCD. In the first image in the series, we picked out the spots as continuous pixel regions that had the values greater than a threshold. Then we selected only those spots that exhibited single-step photobleaching and regarded them as SM fluorescence spots. Pixel values of SM fluorescence spots widely differed. Some SM fluorophores had pixel values smaller than the threshold, and were left unpicked. Assuming the pixel values of SM fluorescence spots differed with a Gaussian profile, we estimated the ratios of unpicked fluorophores to be less than 20% for all the species. Because of the spectral overlaps between species, we also observed cross-talk spots into CCDs other than the respective-color CCDs. These cross-talk SM fluorescence spots can be mistaken for correct species. We thus introduced the classification method and classified SM fluorescence spots into correct species in accordance with two kinds of four-dimensional signal vectors. The error rates of fluorophore classification were estimated to be less than 3.2% for all the species. Our system is suitable for the biological studies that desire to simultaneously monitor the four colors of SM fluorophores.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号