首页 | 本学科首页   官方微博 | 高级检索  
     


Noise reduction for magnetic resonance images via adaptive multiscale products thresholding
Authors:Bao Paul  Zhang Lei
Affiliation:Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong. paulbao@ie.cuhk.edu.hk
Abstract:Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant features in images evolving with high magnitude across wavelet scales, while noise decays rapidly. To exploit the wavelet interscale dependencies we multiply the adjacent wavelet subbands to enhance edge structures while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. Thereafter, an adaptive threshold is calculated and imposed on the products, instead of on the wavelet coefficients, to identify important features. Experiments show that the proposed scheme better suppresses noise and preserves edges than other wavelet-thresholding denoising methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号