Design of Concrete Flexural Members Strengthened in Shear with FRP |
| |
Authors: | Thanasis C. Triantafillou Costas P. Antonopoulos |
| |
Affiliation: | 1Member, ASCE 21Asst. Prof., Dept. of Civ. Engrg., Univ. of Patras, Patras 26500, Greece. E-mail: ttriant@upatras.gr 32Grad. Res. Asst., Dept. of Civ. Engrg., Univ. of Patras, Patras 26500, Greece.
|
| |
Abstract: | The present study describes a simple design model for the calculation of the fiber-reinforced polymer (FRP) contribution to the shear capacity of strengthened RC elements according to the design formats of the Eurocode, American Concrete Institute, and Japan Concrete Institute. The key element in the model is the calculation of an effective FRP strain, which is calculated when the element reaches its shear capacity due to concrete diagonal tension. Diagonal tension failure may be combined with FRP debonding or tensile fracture, and the latter also may occur at a stage beyond the ultimate shear capacity. An upper limit (maximum) to the FRP effective strain also is defined and aimed at controlling crack opening. The effective strain, obtained through calibration with >75 experimental data, is shown to decrease with the FRP axial rigidity divided by the concrete shear strength. It also is demonstrated that the contribution of FRP to shear capacity is typically controlled by either the maximum effective strain or by debonding and, for a given concrete strength, it increases linearly with the FRP axial rigidity until the latter reaches a limiting value beyond which debonding controls and the gain in shear capacity is relatively small. However, proper anchoring (e.g., full wrapping) suppresses the debonding mechanism and results in considerable increases in shear capacity with the FRP axial rigidity. Finally it is demonstrated that, when compared with others, the proposed model gives better agreement with most of the test results available. |
| |
Keywords: | |
|
|