首页 | 本学科首页   官方微博 | 高级检索  
     


Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge
Authors:Hawari J  Halasz A  Beaudet S  Paquet L  Ampleman G  Thiboutot S
Affiliation:Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada. jalal.hawari@nrc.ca
Abstract:Recently we demonstrated that hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a trimer of methylene nitramine (CH2=N-NO2) undergoes spontaneous decomposition following an initial microbial attack using a mixed microbial culture at pH 7 in the presence of glucose as carbon source. The present study describes whether the second cyclic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), a more strained tetramer of CH2=N-NO2, degrades similarly using sludge of the same source. Part of HMX biotransformed to give products that are tentatively identified as the nitroso derivatives octahydro-1-nitroso-3,5,7-trinitro-1,3,5,7-tetrazocine (mNs-HMX) and octahydro-1,3-dinitroso-5,7-dinitro-1,3,5,7-tetrazocine and its isomer octahydro-1,5-dinitroso-3,7-dinitro-1,3,5,7-tetrazocine (dNs-HMX). Another fraction of HMX biotransformed, apparently via ring cleavage, to produce products that are tentatively identified as methylenedinitramine (O2NNHCH2-NHNO2) and bis(hydroxymethyl)nitramine ((HOCH2)2NNO2). None of the above intermediates accumulated indefinitely; they disappeared to predominantly form nitrous oxide (N2O) and formaldehyde (HCHO). Formaldehyde biotransformed further to eventually produce carbon dioxide (14CO2). Nitrous oxide persisted in HMX microcosms containing glucose but denitrified rapidly to nitrogen in the absence of glucose. The presence of nitrous oxide was accompanied by the presence of appreciable amounts of hydrogen sulfide, a known inhibitor of denitrification.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号