首页 | 本学科首页   官方微博 | 高级检索  
     


Subdivision methods for solving polynomial equations
Authors:B. Mourrain  J.P. Pavone
Affiliation:GALAAD, INRIA Méditerranée, BP 93, 06902 Sophia Antipolis, France
Abstract:
This paper presents a new algorithm for solving a system of polynomials, in a domain of RnRn. It can be seen as an improvement of the Interval Projected Polyhedron algorithm proposed by Sherbrooke and Patrikalakis [Sherbrooke, E.C., Patrikalakis, N.M., 1993. Computation of the solutions of nonlinear polynomial systems. Comput. Aided Geom. Design 10 (5), 379–405]. It uses a powerful reduction strategy based on univariate root finder using Bernstein basis representation and Descarte’s rule  . We analyse the behavior of the method, from a theoretical point of view, shows that for simple roots, it has a local quadratic convergence speed and gives new bounds for the complexity of approximating real roots in a box of RnRn. The improvement of our approach, compared with classical subdivision methods, is illustrated on geometric modeling applications such as computing intersection points of implicit curves, self-intersection points of rational curves, and on the classical parallel robot benchmark problem.
Keywords:Resolution   Real solution   Symbolic-numeric computation   Polynomial equation   Subdivision   Bernstein basis   Descartes rule   Complexity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号