首页 | 本学科首页   官方微博 | 高级检索  
     


Postembryonic neurogenesis in the central nervous system of the tobacco hornworm, Manduca sexta. III. Spatial and temporal patterns of proliferation
Authors:R Booker  J Babashak  JB Kim
Affiliation:Division of Biological Sciences, Cornell University, Ithaca, New York 14853, USA.
Abstract:Postembryonic neurogenesis leads to a dramatic increase in the number of functional neurons within the segmental ganglia of the moth, Manduca sexta. These adult-specific neurons are generated during larval life by segment-specific arrays of individually identifiable stem cells, or neuroblasts (Nbs). By the end of the feeding larval stage, each Nb has generated a discrete nest of progeny, which ranges in size from less than 10 to more than 70 progeny. The sizes of these identifiable nests of progeny vary in a segment-specific manner, with the thoracic nests containing a greater number of progeny compared with their homologues in the simpler abdominal ganglia. In order to describe those factors that influence the size of the post-embryonic neuronal lineages, we examined the spatial and temporal pattern of postembryonic neurogenesis in the segmental ganglia of Manduca. The rates at which the identifiable nests accumulated progeny were estimated by counting the number of progeny within the nests, using sectioned material isolated from animals at stages ranging from embryonic hatching until the end of the feeding larval stage. All of the postembryonic Nbs began to generate progeny at around the time of the molt to the third larval instar. Each nest added progeny at a rate that was a characteristic of its identity and segment of origin. Although all of the nests within the thorax continued to accumulate progeny throughout the feeding larval stage, several of the abdominal nests showed little or no growth following the molt to the fifth larval instar. The thymidine analog 5-bromo 2-deoxyuridine (5-BrdU) was used to estimate the mitotic rates of the identifiable Nbs. The number of labeled progeny within a nest 24 h after application of 5-BrdU ranged from a low of 1 to 2 to a high of 11 to 13 labeled cells. In some instances there was a good correlation between the estimated mitotic rate of an identified Nb and the rate of growth of its associated nest of progeny. However, several of the identifiable nests accumulated progeny at a slower rate than predicted based on the estimated mitotic rate of the Nb. Cell death appears to be responsible for slowing the growth of the nests during the feeding larval stage. We estimate that 10% to 70% of the neurons generated during the feeding larval stage degenerate within 24 h of their birth. The level of cell death observed within a nest was dependent on both its identity and its segment of origin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号