首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields
Authors:Karimaghaloo Zahra  Shah Mohak  Francis Simon J  Arnold Douglas L  Collins D Louis  Arbel Tal
Affiliation:Centre for Intelligent Machines, McGill University, Montreal, QC H3A 2A7, Canada. naghaloo@cim.mcgill.ca
Abstract:Gadolinium-enhancing lesions in brain magnetic resonance imaging of multiple sclerosis (MS) patients are of great interest since they are markers of disease activity. Identification of gadolinium-enhancing lesions is particularly challenging because the vast majority of enhancing voxels are associated with normal structures, particularly blood vessels. Furthermore, these lesions are typically small and in close proximity to vessels. In this paper, we present an automatic, probabilistic framework for segmentation of gadolinium-enhancing lesions in MS using conditional random fields. Our approach, through the integration of different components, encodes different information such as correspondence between the intensities and tissue labels, patterns in the labels, or patterns in the intensities. The proposed algorithm is evaluated on 80 multimodal clinical datasets acquired from relapsing-remitting MS patients in the context of multicenter clinical trials. The experimental results exhibit a sensitivity of 98% with a low false positive lesion count. The performance of the proposed algorithm is also compared to a logistic regression classifier, a support vector machine and a Markov random field approach. The results demonstrate superior performance of the proposed algorithm at successfully detecting all of the gadolinium-enhancing lesions while maintaining a low false positive lesion count.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号