首页 | 本学科首页   官方微博 | 高级检索  
     

接触电阻技术研究新进展
引用本文:张楠,张静,魏淑华,王艳蓉,王文武,闫江.接触电阻技术研究新进展[J].微电子学,2018,48(6):791-797, 805.
作者姓名:张楠  张静  魏淑华  王艳蓉  王文武  闫江
作者单位:北方工业大学 电子信息工程学院, 北京 100144;中国科学院微电子研究所, 北京 100029,北方工业大学 电子信息工程学院, 北京 100144,北方工业大学 电子信息工程学院, 北京 100144,北方工业大学 电子信息工程学院, 北京 100144,中国科学院微电子研究所, 北京 100029,北方工业大学 电子信息工程学院, 北京 100144
基金项目:国家自然科学基金资助项目(61674003)
摘    要:从肖特基势垒高度、有效掺杂浓度和有效质量的优化和控制等方面,对接触电阻的最新技术进行了详细的总结。首先,分析了插入界面层的金属-绝缘体-半导体接触结构、界面钝化、杂质分凝技术对于降低肖特基势垒高度的效果。其次,讨论了原位掺杂、固相外延、低温离子注入以及激光退火技术对于提高源/漏掺杂浓度的作用。然后,介绍了通过控制SiGe材料的有效质量来优化接触电阻的技术。最后,通过结合原位掺杂、激光退火和固相外延等先进技术,实现了与CMOS工艺兼容的接触电阻优化集成,满足7/5 nm技术节点的需要。

关 键 词:肖特基势垒高度    原位掺杂    固相外延    激光退火
收稿时间:2018/1/29 0:00:00

Latest Development of Contact Resistivity Technology
ZHANG Nan,ZHANG Jing,WEI Shuhu,WANG Yanrong,WANG Wenwu and YAN Jiang.Latest Development of Contact Resistivity Technology[J].Microelectronics,2018,48(6):791-797, 805.
Authors:ZHANG Nan  ZHANG Jing  WEI Shuhu  WANG Yanrong  WANG Wenwu and YAN Jiang
Affiliation:School of Electronic Information Engineering, North China University of Technology, Beijing 100144, P.R.China;Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, P.R.China,School of Electronic Information Engineering, North China University of Technology, Beijing 100144, P.R.China,School of Electronic Information Engineering, North China University of Technology, Beijing 100144, P.R.China,School of Electronic Information Engineering, North China University of Technology, Beijing 100144, P.R.China,Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, P.R.China and School of Electronic Information Engineering, North China University of Technology, Beijing 100144, P.R.China
Abstract:Latest contact resistivity technology was summarized in detail from the optimization and control of Schottky barrier height, active doping concentration and effective mass. Firstly, the effect of metal-interfacial layer-semiconductor contact, interface passivation and dopant segregation technology was analyzed to reduce Schottky barrier height. Secondly, the role of in situ doping, solid phase epitaxy, cold ion implantation and laser annealing techniques were discussed to enhance the active doping of source/drain. Then, the effective quality control of SiGe materials was introduced to optimize the contact resistance. Finally, optimal integration process of contact resistivity, which was compatible with CMOS process and could meet the requirements of the 7/5 nm technology node, was achieved by combining in situ doping, laser annealing technology with solid phase epitaxy technology.
Keywords:
点击此处可从《微电子学》浏览原始摘要信息
点击此处可从《微电子学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号