首页 | 本学科首页   官方微博 | 高级检索  
     

融合空洞卷积与注意力的胃癌组织切片分割
作者姓名:陈颍锶  李晗  周雪婷  万程
作者单位:南京航空航天大学电子信息工程学院, 南京 211106
基金项目:中国博士后科学基金项目(2019M661832);江苏省博士后科研资助计划(2019K226);江苏高校优势学科建设工程项目
摘    要:目的 病理组织切片检查是诊断胃癌的金标准,准确发现切片中的病变区域有助于及时确诊并开展后续治疗。然而,由于病理切片图像的复杂性、病变细胞与正常细胞形态差异过小等问题,传统的语义分割模型并不能达到理想的分割效果。基于此,本文提出了一种针对病理切片的语义分割方法ADEU-Net (attention-dilated-efficient U-Net++),提高胃癌区域分割的精度,实现端到端分割。方法 ADEU-Net使用经过迁移学习的EfficientNet作为编码器部分,增强图像特征提取能力。解码器采用了简化的U-Net++短连接方式,促进深浅层特征融合的同时减少网络参数量,并重新设计了其中的卷积模块提高梯度传递能力。中心模块使用空洞卷积对编码器输出结果进行多尺度的特征提取,增强模型对不同尺寸切片的鲁棒性。编码器与解码器的跳跃连接使用了注意力模块,以抑制背景信息的特征响应。结果 在2020年“华录杯”江苏大数据开发与应用大赛(简称“SEED”大赛)数据集中与其他经典方法比较,验证了一些经典模型在该分割任务中难以拟合的问题,同时实验得出修改特征提取方式对结果有较大提升,本文方法在分割准确度上比原始U-Net提高了18.96%。在SEED数据集与2017年中国大数据人工智能创新创业大赛(brain of things,BOT)数据集中进行了消融实验,验证了本文方法中各个模块均有助于提高病理切片的分割效果。在SEED数据集中,本文方法ADEU-Net比基准模型在Dice系数、准确度、敏感度和精确度上分别提升了5.17%、2.7%、3.69%、4.08%;在BOT数据集中,本文方法的4项指标分别提升了0.47%、0.06%、4.30%、6.08%。结论 提出的ADEU-Net提升了胃癌病理切片病灶点分割的精度,同时具有良好的泛化性能。

关 键 词:胃癌  病理组织切片  语义分割  深度卷积神经网络  注意力机制  多尺度特征融合
收稿时间:2020-12-14
修稿时间:2021-02-19
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号