首页 | 本学科首页   官方微博 | 高级检索  
     

基于脉冲耦合神经网络和施密特正交基的一种新型图像压缩编码算法
引用本文:马义德,齐春亮,钱志柏,史飞,张在峰. 基于脉冲耦合神经网络和施密特正交基的一种新型图像压缩编码算法[J]. 电子学报, 2006, 34(7): 1255-1259
作者姓名:马义德  齐春亮  钱志柏  史飞  张在峰
作者单位:兰州大学信息工程学院,甘肃,兰州,730000;兰州大学信息工程学院,甘肃,兰州,730000;兰州大学信息工程学院,甘肃,兰州,730000;兰州大学信息工程学院,甘肃,兰州,730000;兰州大学信息工程学院,甘肃,兰州,730000
基金项目:国家自然科学基金(No.60572011);985特色项目计划(No.LZ985-231-582627);甘肃省交叉学科青年创新项目(No.870810)
摘    要:
自从脉冲耦合神经网络(PCNN)被提出以来,在图像处理、模式识别、人工智能等领域得到了广泛应用.由于其生物学背景的特性,使得其能够对灰度图像进行完美的分割:PCNN局部连接域的作用及阈值指数衰减特性,使得具有近似灰度特性的邻近像素能够同时处于激活状态,这就构成了PCNN分割特性的基础,使得图像分割结果既能较好地包含原始图像细节信息,又能避免一些无意义的小分割块的产生.借鉴施密特正交化思想,利用自然初始基对每一分割区域进行变换,得到一组正交基的变换系数,相对于分割前图像的数据量大为减少,存储空间需求小,从而实现了压缩.相对于JPEG算法,该方法使重建图像的质量得到显著提高,同时也使得逐步重建图像成为可能.

关 键 词:脉冲耦合神经网络  正交基  不规则分割区域  施密特正交化
文章编号:0372-2112(2006)07-1255-05
收稿时间:2005-04-04
修稿时间:2005-04-042006-04-17

A Novel Image Compression Coding Algorithm Based on Pulse-Coupled Neural Network and Gram-Schmidt Orthogonal Base
MA Yi-de,QI Chun-liang,QIAN Zhi-bai,SHI Fei,ZHANG Zai-feng. A Novel Image Compression Coding Algorithm Based on Pulse-Coupled Neural Network and Gram-Schmidt Orthogonal Base[J]. Acta Electronica Sinica, 2006, 34(7): 1255-1259
Authors:MA Yi-de  QI Chun-liang  QIAN Zhi-bai  SHI Fei  ZHANG Zai-feng
Affiliation:College of Information Science & Engineering,Lanzhou University,Lanzhou,Gansu 730000,China
Abstract:
Pulse Coupled Neural Network(PCNN) has gained widely application in image processing,pattern recognition,artificial intelligence etc,since it was proposed.PCNN can perform perfect image segmentation due to its biological background.PCNN has the property of local interconnection and changing threshold through which those adjacent pixels that have approximate gray values can be pulsed simultaneously.So PCNN has the foundation of realizing the regional segmentation.And segmented images that contain the details of origin can be achieved and at the same time the trivial segmented regions may be avoided.For the better approximation of irregular segmented regions,the Gram-Schmidt method,by which a group of orthogonal base functions is constructed from a group of linear independent initial functions,is adopted.It was found that much less computer memory was needed to store the coefficients than the original image,resulting in data compression.Because of the orthogonal reconstructing method,the quality of reconstructed image can be greatly improved and the progressive image transmission also becomes possible compared to JPEG algorithm.
Keywords:pulse-coupled neural neworks  the orthonormal basis  irregular segmented region  Gram-Schmidt or- thonormalization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号