首页 | 本学科首页   官方微博 | 高级检索  
     

基于进化元胞自动机的结构拓扑优化
引用本文:王安麟,姜涛. 基于进化元胞自动机的结构拓扑优化[J]. 机械工程学报, 2005, 41(2): 1-5
作者姓名:王安麟  姜涛
作者单位:上海交通大学机械与动力工程学院,上海,200030;上海交通大学机械与动力工程学院,上海,200030
基金项目:国家自然科学基金重大项目(50390060)博士点基金(20020248048)资助项目
摘    要:实现元胞自动机算法自组织演化机制的关键是建立适合问题的局部规则。传统的方法是根据人们的经验或 其他算法得到的结果来建立局部规则,被称为局部间接规则。为了解决局部间接规则存在的局限性,计算量大等 缺点,提出用进化建立元胞自动机局部直接规则的方法。通过建立结构优化的多目标优化模型,用遗传算法寻求 最优的演化规则,得到适应相应问题的解。由仿真结果可见用遗传算法建立的元胞自动机局部直接规则对复杂系 统的自组织问题是很有效的。

关 键 词:结构拓扑优化  元胞自动机  遗传算法  多目标优化  有限元法
修稿时间:2004-03-07

Structural topology optimization using evolutionary cellular automata
Wang Anlin,Jiang Tao. Structural topology optimization using evolutionary cellular automata[J]. Chinese Journal of Mechanical Engineering, 2005, 41(2): 1-5
Authors:Wang Anlin  Jiang Tao
Abstract:The key technique of cellular automata operation is to establish transition rules suitable to corresponding problem. Traditionally, the indirect transition rules are established by experience or according to the results obtained through other arithmetic. To overcome the shortcomings of localization and long operation time caused by adopting indirect transition rules, genetic algorithms based direct transition rules are discussed. The direct local transition rules established by genetic algorithms are used in the thin-plate topological layout minimum weight optimization. Multi-objective optimization model is created and optimum transition rules are obtained by the evolution of genetic algorithms. From the simulation results, it is observed that the local direct rules obtained by evolution are effective in the self-organization process of the complex problems.
Keywords:Structural topology optimization Cellular automata Genetic algorithm Multi-objective optimization Finite element method (FEM)
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号