首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering
Abstract:Porous scaffolds are biocompatible and bioactive temporary substrates. They should present appropriated microstructure, mechanical properties and surface properties for guiding bone tissue regeneration. In this work, scaffolds of Poly(3-hydroxybutyrate) (PHB) were printed by Selective Laser Sintering (SLS). The effect of scan spacing (SS) and powder layer thickness (PLT) on the morphology, mechanical properties and dimensional deviations related to the digital model of sintered scaffolds was evaluated. Curling was observed in the first built layers of scaffolds, mainly for scaffolds printed with the lowest PLT. Besides designed pores, the scaffolds also presented micropores derived from the incomplete sinterisation of PHB particles. This morphology can be advantageous for bone regeneration. The variation of PLT caused a higher difference between the values of scaffold mechanical properties than the variation of SS. The scaffolds, except the one printed with the highest PLT or SS, showed mechanical properties within the lower range of human trabecular bone.
Keywords:scaffolds  selective laser sintering  process parameters  mechanical properties  bone regeneration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号