首页 | 本学科首页   官方微博 | 高级检索  
     


Minimum length scale constraints in multi-scale topology optimisation for additive manufacturing
Abstract:
ABSTRACT

This paper performs a combined numerical and experimental study to explore the role of minimum length scale constraints in multi-scale topology optimisation. Multi-scale topology optimisation is generally performed without considering the actual unit cell size, while an arbitrary value considerably smaller than the part is selected afterwards. However, this procedure would be problematic if including geometric constraints, e.g. minimum length scale constraints, since geometric constraints cannot be applied without knowing the unit cell dimensions. To address this issue, unit cell size should be defined beforehand, and guidelines will be provided in this work through a thorough numerical exploration, i.e. compliance minimisation multi-scale topology optimisation with different unit cell sizes and a consistent minimum length scale limit will be performed. The numerical results indicate that selecting the unit cell size considerably smaller than the part and larger than the length scale limit would be recommended. Then, experiments are conducted to explore the effect of minimum length scale limit on the stiffness and strength of the multi-scale design. It is observed that increasing the minimum length scale limit would reduce the structural mechanical performance in both aspects.
Keywords:Multi-scale  topology optimisation  additive manufacturing  unit cell size  length scale
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号