首页 | 本学科首页   官方微博 | 高级检索  
     

自适应协同进化多目标进化算法
引用本文:许 峰,吴福芳. 自适应协同进化多目标进化算法[J]. 计算机工程与应用, 2016, 52(6): 26-30
作者姓名:许 峰  吴福芳
作者单位:安徽理工大学 理学院,安徽 淮南 232001
摘    要:
为了提高协同进化多目标进化算法的全局收敛性,提出了一种调用协同进化算子的自适应方法。其基本思想是:根据目标函数的变化率自动调用协同进化算子;当种群进化正常时,调用合作算子和吞并算子;当种群进化接近停滞时,调用分裂算子。通过数值实验用量化指标研究了新算法的收敛性和分布性,结果表明,与常规协同进化多目标进化算法相比,新算法不仅具有良好的分布性,而且全局收敛性有了明显的提高。

关 键 词:多目标进化算法  协同进化  自适应  收敛性  分布性  

Adaptive co-evolutionary multi-objective evolutionary algorithm
XU Feng,WU Fufang. Adaptive co-evolutionary multi-objective evolutionary algorithm[J]. Computer Engineering and Applications, 2016, 52(6): 26-30
Authors:XU Feng  WU Fufang
Affiliation:School of Science, Anhui University of Science and Technology, Huainan, Anhui 232001, China
Abstract:
In order to improve the global convergence of co-evolutionary multi-objective evolutionary algorithm, an adaptive method to call co-evolution operator is proposed. The basic idea of method is that co-evolution operators are dynamically called according to the change rate of objective function. When the evolution is normal, cooperation operator and merging operator are called, and otherwise division operator is called. The convergence and distribution of improved algorithm are studied by means of numerical experiments, and results show that the new algorithm not only has good distribution, but also global convergence has been significantly improved compared with the conventional co-evolutionary multi-objective evolutionary algorithm.
Keywords:multi-objective evolutionary algorithm  co-evolution  adaptive  convergence  distribution  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号