首页 | 本学科首页   官方微博 | 高级检索  
     

基于UWT和独立分量分析的含噪盲源分离
引用本文:蔡伟华,何选森. 基于UWT和独立分量分析的含噪盲源分离[J]. 计算机工程与应用, 2016, 52(16): 180-185
作者姓名:蔡伟华  何选森
作者单位:湖南大学 信息科学与工程学院,长沙 410082
摘    要:提出了基于UWT(非抽样小波变换)去噪与FastICA(快速独立分量分析)算法相结合的含噪盲源分离方法,采用先去噪后分离的方式实现了在加性高斯噪声环境下混合图像的盲分离。仿真结果表明,该方法能很好地从加性高斯噪声中分离出源图像,与曲波阈值去噪后的FastICA方法相比较,该方法能获得更好的峰值信噪比。

关 键 词:盲源分离  非抽样小波变换(UWT)  快速独立分量分析  曲波变换  峰值信噪比  

Noisy blind source separation based on undecimated wavelet transform and independent component analysis
CAI Weihua,HE Xuansen. Noisy blind source separation based on undecimated wavelet transform and independent component analysis[J]. Computer Engineering and Applications, 2016, 52(16): 180-185
Authors:CAI Weihua  HE Xuansen
Affiliation:College of Information Science and Engineering, Hunan University, Changsha 410082, China
Abstract:This paper proposes a method to realize noisy blind source separation based on UWT(Undecimated Wavelet Transform) denoising and FastICA(Independent Component Analysis). The method employs a model of ICA after denoising to implement noisy image separation under the environment of additive Gaussian noise. The simulation results show that the proposed method can separate noisy mixed images efficiently. Compared with the method based on curvelet denosing before ICA, the proposed method can obtain better performance of Peak Signal-to-Noise Ratio(PSNR).
Keywords:blind source separation  Undecimated Wavelet Transform(UWT)  Fast Independent Component Analysis(FastICA)  curvelet transform  Peak Signal-to-Noise Ratio(PSNR)  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号