首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM的疏浚管道流速预测模型
引用本文:李雷,倪福生,蒋爽,姚命宏. 基于LSTM的疏浚管道流速预测模型[J]. 自动化与仪表, 2022, 0(2)
作者姓名:李雷  倪福生  蒋爽  姚命宏
作者单位:河海大学机电工程学院;河海大学疏浚技术教育部工程研究中心
基金项目:江苏省成果转化资金资助项目(BA2016143)。
摘    要:疏浚管道输送系统是绞吸挖泥船的重要组成部分,在施工过程中对流速的控制至关重要。该文以现有疏浚管道输送实验台为对象,提出了一种疏浚管道输送系统的流速预测模型。首先针对反向传播神经网络(BP)无法处理序列间的关联信息以及传统循环神经网络(RNN)无法记忆久远关键信息的缺陷,提出了基于长短期记忆循环神经网络(LSTM)的流速预测模型;然后使用LSTM模型对疏浚管道输送实验台和绞吸挖泥船的数据集进行网络训练,并对管道流速进行预测。通过将流速的预测值与真实值进行对比,验证了该文提出的LSTM模型具有很强的适用性和很高的准确性。

关 键 词:泥浆管道流速  长短期记忆  循环神经网络  管道输送系统

Prediction Model of Dredging Pipeline Velocity Based on LSTM
LI Lei,NI Fu-sheng,JIANG Shuang,YAO Ming-hong. Prediction Model of Dredging Pipeline Velocity Based on LSTM[J]. Automation and Instrumentation, 2022, 0(2)
Authors:LI Lei  NI Fu-sheng  JIANG Shuang  YAO Ming-hong
Affiliation:(College of Mechanical and Electrical Engineering,Hohai University,Changzhou 213022,China;Dredging Technology Engineering Research Center of Ministry of Education,Hohai University,Changzhou 213022,China)
Abstract:Dredging pipeline transportation system is an important part of cutter suction dredger,and it is very important to control the flow rate in the construction process. This paper presents a velocity prediction model for dredging pipeline transportation system based on the existing dredging pipeline transportation test bed. Firstly,a flow rate prediction model based on long short term memory(LSTM) was proposed to solve the problem that the back-propagation neural network(BP) could not process the correlation information between sequences and the traditional recurrent neural network(RNN) could not remember the long-term key information. Then LSTM model is used to train the data set of dredged pipeline transport test bed and cutter suction dredger,and the pipeline velocity is predicted. By comparing the predicted value of flow velocity with the real value,the LSTM model proposed in this paper is proved to have strong applicability and high accuracy.
Keywords:mud pipeline flow rate  long short term memory(LSTM)  recurrent neural network(RNN)  pipeline delivery system
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号