首页 | 本学科首页   官方微博 | 高级检索  
     


A nested Krylov subspace method to compute the sign function of large complex matrices
Authors:Jacques C.R. Bloch  Simon Heybrock
Affiliation:Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
Abstract:
We present an acceleration of the well-established Krylov–Ritz methods to compute the sign function of large complex matrices, as needed in lattice QCD simulations involving the overlap Dirac operator at both zero and nonzero baryon density. Krylov–Ritz methods approximate the sign function using a projection on a Krylov subspace. To achieve a high accuracy this subspace must be taken quite large, which makes the method too costly. The new idea is to make a further projection on an even smaller, nested Krylov subspace. If additionally an intermediate preconditioning step is applied, this projection can be performed without affecting the accuracy of the approximation, and a substantial gain in efficiency is achieved for both Hermitian and non-Hermitian matrices. The numerical efficiency of the method is demonstrated on lattice configurations of sizes ranging from 44 to 104, and the new results are compared with those obtained with rational approximation methods.
Keywords:Lattice QCD   Krylov methods   Chiral symmetry   Sign function
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号