首页 | 本学科首页   官方微博 | 高级检索  
     

随机利率下的均值-方差最小套期保值
引用本文:张海沨. 随机利率下的均值-方差最小套期保值[J]. 工程数学学报, 2007, 24(6): 972-976
作者姓名:张海沨
作者单位:中国银监会浙江监管局合作处,杭州,310004
摘    要:均值-方差套期保值是套期保值的主要方法之一。不连续资产价格的均值-方差套期保值策略通常是在利率为非随机的情况下获得的。本文考虑在随机利率下,资产价格为特殊半鞅的均值-方差套期保值问题。通过适当的概率测度变换,将具有随机利率的情形简化为非随机利率情形,再利用Galtchouk-Kunita-Watanabe分解,获得了资产价格为一般的特殊半鞅,具有随机利率的的均值-方差套期保值策略。

关 键 词:均值-方差套期保值  特殊半鞅  Galtchouk-Kunita-Watanabe分解  方差最优鞅测度
文章编号:1005-3085(2007)06-0972-05
收稿时间:2005-12-29-
修稿时间:2005-12-29

Mean-variance Hedging under Stochastic Interests
ZHANG Hai-feng. Mean-variance Hedging under Stochastic Interests[J]. Chinese Journal of Engineering Mathematics, 2007, 24(6): 972-976
Authors:ZHANG Hai-feng
Abstract:Mean-variance hedging is one of main methods for hedging. Mean-variance hedging strate-gies for general discontinuous asset prices are usually obtained under nonstochastic interst rate. In this paper,mean-variance hedging problem for asset prices which are special semimartingales is concerned under the stochastic interest rate. By proper measure transformation,the stochastic interest rate case is reduced to one with nonstochastic interest rate. Then,using the Galtchouk-Kunita-Watanabe decom-position we obtain mean-variance hedging strategies for asset prices which are special semimartingales with stochastic interest rate.
Keywords:mean-variance hedging  special semimartingale  Galtchouk-Kunita-Watanabe decomposi-tion  variance-optimal martingale measure
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号