首页 | 本学科首页   官方微博 | 高级检索  
     


Maritime abnormality detection using Gaussian processes
Authors:Mark Smith  Steven Reece  Stephen Roberts  Ioannis Psorakis  Iead Rezek
Affiliation:1. ISSG, Babcock Marine and Technology Division, Devonport Royal Dockyard, Plymouth, PL1 4SG, UK
2. Department of Engineering Science, University of Oxford, Oxford, UK
3. Schlumberger Research, Cambridge, UK
Abstract:Novelty, or abnormality, detection aims to identify patterns within data streams that do not conform to expected behaviour. This paper introduces novelty detection techniques using a combination of Gaussian processes, extreme value theory and divergence measurement to identify anomalous behaviour in both streaming and batch data. The approach is tested on both synthetic and real data, showing itself to be effective in our primary application of maritime vessel track analysis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号