Atomic data and spectral line intensities for Ni XXV |
| |
Authors: | E. Landi A.K. Bhatia |
| |
Affiliation: | a ARTEP, Inc., Columbia, MD 21044, USA b Naval Research Laboratory, Washington, DC 20375, USA c NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA |
| |
Abstract: | Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XXV. The configurations used are 2s2,2s2p,2p2,2l3l′,2l4l′, and 2s5l′, with l=s,p and giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (50, 100, 150, 225, 300, 375, and 450 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and at five incident energies (150, 225, 300, 375, and 450 Ry) for transitions between the lowest five levels and the configurations. The calculations are carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range at an electron temperature of , corresponding to the maximum abundance of Ni XXV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|