首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
Authors:Kuk-Hyun Han Jong-Hwan Kim
Affiliation:Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon;
Abstract:This paper proposes a novel evolutionary algorithm inspired by quantum computing, called a quantum-inspired evolutionary algorithm (QEA), which is based on the concept and principles of quantum computing, such as a quantum bit and superposition of states. Like other evolutionary algorithms, QEA is also characterized by the representation of the individual, evaluation function, and population dynamics. However, instead of binary, numeric, or symbolic representation, QEA uses a Q-bit, defined as the smallest unit of information, for the probabilistic representation and a Q-bit individual as a string of Q-bits. A Q-gate is introduced as a variation operator to drive the individuals toward better solutions. To demonstrate its effectiveness and applicability, experiments were carried out on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that QEA performs well, even with a small population, without premature convergence as compared to the conventional genetic algorithm.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号