首页 | 本学科首页   官方微博 | 高级检索  
     


Extremely low surface recombination velocities on low‐resistivity n‐type and p‐type crystalline silicon using dynamically deposited remote plasma silicon nitride films
Authors:Shubham Duttagupta  Fen Lin  Marshall Wilson  Matthew B Boreland  Bram Hoex  Armin G Aberle
Abstract:Extremely low upper‐limit effective surface recombination velocities (Seff.max) of 5.6 and 7.4 cm/s, respectively, are obtained on ~1.5 Ω cm n‐type and p‐type silicon wafers, using silicon nitride (SiNx) films dynamically deposited in an industrial inline plasma‐enhanced chemical vapour deposition (PECVD) reactor. SiNx films with optimised antireflective properties in air provide an excellent Seff.max of 9.5 cm/s after high‐temperature (>800 °C) industrial firing. Such low Seff.max values were previously only attainable for SiNx films deposited statically in laboratory reactors or after optimised annealing; however, in our case, the SiNx films were dynamically deposited onto large‐area c‐Si wafers using a fully industrial reactor and provide excellent surface passivation results both in the as‐deposited condition and after industrial‐firing, which is a widely used process in the photovoltaic industry. Contactless corona‐voltage measurements reveal that these SiNx films contain a relatively high positive charge of (4–8) × 1012 cm−2 combined with a relatively low interface defect density of ~5 × 1011 eV−1 cm−2. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:surface recombination velocity  silicon nitride  surface passivation  industrial inline PECVD reactor  fixed charge density  interface defect density  industrial firing stable
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号