首页 | 本学科首页   官方微博 | 高级检索  
     

超宽带信道建模中基于压缩感知的解卷积算法
引用本文:李德建,周正,李斌,翟世俊. 超宽带信道建模中基于压缩感知的解卷积算法[J]. 电子与信息学报, 2012, 0(3): 644-649
作者姓名:李德建  周正  李斌  翟世俊
作者单位:北京邮电大学泛网无线通信教育部重点实验室
基金项目:国家重大专项(2009ZX03006-009);韩国知识经济部信息技术研究中心项目(NIPA-2011-C1090-1111-0007)资助课题
摘    要:
针对频域测量方式下的超宽带(UWB)信道测量数据后处理,该文提出了用具有高斯滚降特性过渡带的类高斯窗,提取符合中国UWB频谱规范的信道测量数据,并将类高斯窗对应的时域脉冲作为先验信息,使用基于压缩感知(CS)的算法对时域信道测量信号解卷积,使得解卷积后的信道冲激响应具有高分辨率特性。利用频域加窗补零,以及改变解卷积算法中参数化波形字典原子的步长,可以得到不同分辨率的解卷积结果。采用匹配追踪(Matching Pursuit,MP)算法作为CS的重构算法。针对一间办公室的视距(LOS)与非视距(NLOS)信道测量数据处理结果表明,基于压缩感知的解卷积算法可以用较少的观测值获得和CLEAN算法相近的解卷积性能。

关 键 词:超宽带信道建模  压缩感知  解卷积  加窗  频域测量

A Deconvolution Algorithm for Ultra Wideband Channel Modeling Based on Compressive Sensing
Li De-jian Zhou Zheng Li Bin Zhai Shi-jun. A Deconvolution Algorithm for Ultra Wideband Channel Modeling Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2012, 0(3): 644-649
Authors:Li De-jian Zhou Zheng Li Bin Zhai Shi-jun
Affiliation:Li De-jian Zhou Zheng Li Bin Zhai Shi-jun(Key Laboratory of Universal Wireless Communications,Ministry of Education, Beijing University of Posts and Telecommunications,Beijing 100876,China)
Abstract:
A deconvolution algorithm based on Compressive Sensing(CS) is proposed for the post-processing of Ultra WideBand(UWB) channel modeling using frequency-domain measurements.A window with Gaussian transition band is used to extract the measurements according to the UWB frequency regulation policy of China.The time-domain waveform of the quasi-Gaussian window is used as the apriori information of the CS based deconvolution algorithm.The deconvolution results are with high-resolution characteristic.Furthermore,flexible zero-padding of windowing and the design of parameterized waveform dictionary lead to different resolutions of the deconvolution results.Matching Pursuit(MP) algorithm is used as the reconstruction algorithm of CS.Both LOS and NLOS measurements of offices are exploited to demonstrate that the proposed CS based deconvolution algorithm can achieve comparable performance with CLEAN algorithm using fewer samples.
Keywords:Ultra WideBand(UWB) channel modeling  Compressive Sensing(CS)  Deconvolution  Windowing  Frequency-domain measurement
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号