首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of mechanical and air-particle cleansing protocols of provisional cement on immediate dentin sealing layer and subsequent adhesion of resin composite cement
Authors:Mutlu Özcan  Sofia Lamperti
Affiliation:1. Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, University of Zurich, Zurich, Switzerlandmutluozcan@hotmail.com;3. Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, University of Zurich, Zurich, Switzerland
Abstract:Immediate dentin sealing (IDS) could avoid contamination of dentin from impression material and provisional cement but prior to final cementation of indirect restorations, removal of the provisional cement may damage the IDS. The objectives of this study were to investigate the effect of mechanical and air-particle cleansing protocols of provisional cement on IDS layer and subsequent adhesion of resin composite cement. The cuspal dentin surfaces of human third molars (N = 21, nquadrant = 84) were exposed by a low-speed diamond saw under water cooling and conditioned with an adhesive system based on the three-step etch and rinse technique (OptiBond FL). Provisional cement (Freegenol) was applied on each specimen. They were then randomly divided into six subgroups where the provisional cement was removed either by (1) air-borne particle abrasion with 50-μm Al2O3 particles at 2 bar (AL2), (2) air-borne particle abrasion with 50-μm Al2O3 particles at 3.5 bar (AL3.5), (3) air-borne particle abrasion with 30-μm SiO2 particles at 2 bar (SL2), (4) air-borne particle abrasion with 30-μm SiO2 particles at 3.5 bar (SL3.5), (5) prophylaxy paste (Cleanic) (PP) or (6) pumice-water slurry (PW) at 1500 rpm for 15 s. The dentin surface on each tooth was assigned to four quadrants and each quadrant received the cleansing methods in a clockwise sequence. The non-contaminated and non-cleansed teeth acted as the control (C). Two separate teeth, contaminated and cleansed according to six cleansing protocols, were allocated for scanning electron microscopy (SEM) analysis (×2000). The dentin surfaces in each quadrant received resin composite luting cement (Variolink II, Ivoclar Vivadent) incrementally in a polyethylene mould (diameter: 1 mm2; height: 4 mm) and photopolymerized. The specimens were stored in distilled water for 24 h at 37 °C until the testing procedures and then shear force was applied to the adhesive interface until failure occurred in a universal testing machine (0.5 mm/min). Microshear bond (μSBS) was calculated by dividing the maximum load (N) by the bonding surface area of the resin cement. Failure types were analysed using optical microscope and SEM. Data (MPa) were analysed using one-way ANOVA (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m) and shape (0), values were calculated. Mean μSBS results (MPa) showed a significant difference between the experimental groups (p = 0.011) and were in a descending order as follows: C (8 ± 2.3)a < AL2 (6.7 ± 2.4)b < PP (6.9 ± 2)b < PW (6.5 ± 2.1)b < AL3.5 (5.8 ± 1.1)b < SL2 (5.3 ± 1)b < SL3.5 (5.2 ± 1)b. Failure types were predominantly mixed failure type between the dentin and the adhesive resin which is a combination of adhesive and cohesive failures in the adhesive resin. Cohesive failure in the dentin was not observed in any of the groups. Weibull distribution presented lower shape (0) for C (3.9), AL2 (3.2), PP (3.5) and PW (3.6). SEM analysis showed rough surfaces especially in the air-abraded groups whereas mechanical cleansing methods presented smoother surfaces and partially covered by particle remnants all of which occluded the dentin tubuli.
Keywords:adhesion  air-abrasion  cleansing protocols  contamination  immediate dentin sealing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号