Non-linear finite element dynamic analysis of two-dimensional concrete structures
Authors:
F. B. A. Beshara and K. S. Virdi
Affiliation:
Structures Research Centre, Department of Civil Engineering, City University, Northampton Square, London EC1V 0HB, U.K.
Abstract:
This paper presents a numerical procedure for predicting the non-linear dynamic response of plane and axisymmetric reinforced concrete structures. Isoparametric elements with special embedded axial members are used to discretize concrete and steel in space. A summary of a rate and history dependent constitutive model for progressive failure analysis of concrete is given in which the compression behaviour is modelled as a strain rate sensitive elasto-viscoplastic material and in tension as strain rate dependent linear elastic strain softening material. The different rales governing the pre-failure and post-failure behaviour in compression and tension are developed in which the strain rate dependency is included. Steel is modelled as a strain rate dependent uniaxial elasto-viscoplastic material. Explicit central difference scheme in conjunction with an energy balance check is employed for time integration of equations of motion. A computer program for linear and non-linear dynamic analysis of concrete structures is described. Finally, some numerical applications are presented.