A dynamic model of the hand with application in functional neuromuscular stimulation |
| |
Authors: | A Esteki JM Mansour |
| |
Affiliation: | Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. |
| |
Abstract: | Potential hand function in people with tetraplegia was evaluated using a three-dimensional dynamic mathematical model. The model was used to evaluate hand positioning, grasp force, and the outcome of surgeries such as tendon transfers and joint fusion, in situations typical of those encountered when using functional neuromuscular stimulation to restore function in people with tetraplegia. In the model, the hand is treated as a jointed multibody system. Each joint is subjected to muscle moments, passive joint moment, and moments due to grasp forces. Model simulations showed that function was highly dependent on both muscle strength and joint passive moments. The potential for tendon transfers, such as the Zancolli-lasso and intrinsicplasty, plasty, to improve hand function was demonstrated, but their value is subject-dependent. It was also shown that activation of multiple thumb muscles (adductor pollicis, abductor pollicis brevis, and flexor pollicis longus) without interphalangeal joint fusion can provide convenient lateral pinch posture with approximately 70% more grip force than a currently used method, which includes joint fusion but requires only one muscle. Finally, a grasp protocol was introduced and shown successful in palmar grasp and hold of movable cylindrical objects using only extrinsic muscles, provided the fingers could be extended sufficiently to enclose the object. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|