首页 | 本学科首页   官方微博 | 高级检索  
     


Document clustering using synthetic cluster prototypes
Authors:Argyris Kalogeratos Author VitaeAristidis LikasAuthor Vitae
Affiliation:
  • Department of Computer Science, University of Ioannina, 45110, Ioannina, Greece
  • Abstract:The use of centroids as prototypes for clustering text documents with the k-means family of methods is not always the best choice for representing text clusters due to the high dimensionality, sparsity, and low quality of text data. Especially for the cases where we seek clusters with small number of objects, the use of centroids may lead to poor solutions near the bad initial conditions. To overcome this problem, we propose the idea of synthetic cluster prototype that is computed by first selecting a subset of cluster objects (instances), then computing the representative of these objects and finally selecting important features. In this spirit, we introduce the MedoidKNN synthetic prototype that favors the representation of the dominant class in a cluster. These synthetic cluster prototypes are incorporated into the generic spherical k-means procedure leading to a robust clustering method called k-synthetic prototypes (k-sp). Comparative experimental evaluation demonstrates the robustness of the approach especially for small datasets and clusters overlapping in many dimensions and its superior performance against traditional and subspace clustering methods.
    Keywords:Clustering methods   Document clustering   Text mining   Term selection   Subspace clustering
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号