首页 | 本学科首页   官方微博 | 高级检索  
     

基于在线判别式字典学习的鲁棒视觉跟踪
引用本文:薛模根, 朱虹, 袁广林. 基于在线判别式字典学习的鲁棒视觉跟踪[J]. 电子与信息学报, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325
作者姓名:薛模根  朱虹  袁广林
作者单位:1.(陆军军官学院偏振光成像探测技术安徽省重点实验室 合肥 230031) ②(陆军军官学院十一系 合肥 230031)
基金项目:国家自然科学基金,中国博士后科学基金,安徽省自然科学基金(1508085QF114)资助课题
摘    要:现有子空间跟踪方法较好地解决了目标表观变化和遮挡问题,但是它对复杂背景下目标跟踪的鲁棒性较差。针对此问题,该文首先提出一种基于Fisher准则的在线判别式字典学习模型,利用块坐标下降和替换操作设计了该模型的在线学习算法用于视觉跟踪模板更新。其次,定义候选目标编码系数与目标样本编码系数均值之间的距离为系数误差,提出以候选目标的重构误差与系数误差的组合作为粒子滤波的观测似然跟踪目标。实验结果表明:与现有跟踪方法相比,该文跟踪方法具有较强的鲁棒性和较高的跟踪精度。

关 键 词:视觉跟踪   模板更新   字典学习   观测似然
收稿时间:2014-10-20
修稿时间:2015-02-09
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号