首页 | 本学科首页   官方微博 | 高级检索  
     

基于可信位置排序的咬尾卷积码译码算法
引用本文:王晓涛, 刘振华. 基于可信位置排序的咬尾卷积码译码算法[J]. 电子与信息学报, 2015, 37(7): 1575-1579. doi: 10.11999/JEIT141459
作者姓名:王晓涛  刘振华
作者单位:中国电子科技集团公司第三十八研究所 合肥 230088
摘    要:
咬尾卷积码的传统译码算法没有考虑咬尾格形图的循环性,译码起始位置固定,译码效率相对较低。该文首次证明了咬尾卷积码基于格形图的译码算法与译码起始位置无关,即从任意位置开始译码得到的最优咬尾路径即为全局最优咬尾路径。基于此提出一种基于可信位置排序的咬尾卷积码译码算法。新算法利用咬尾格形图的循环性,根据接收到的信道输出序列估算每个译码起始位置的可靠性,从而选择一个可靠性最高的译码起始位置。和传统译码算法相比,所提算法具有更快的收敛速度。

关 键 词:咬尾码   咬尾格形图   循环性   最大似然译码
收稿时间:2014-11-20
修稿时间:2015-02-28

Belief Ranking Based Low-complexity Maximum Likelihood Decoding Algorithm for Tail-biting Convolutional Codes
Wang Xiao-tao, Liu Zhen-hua. Belief Ranking Based Low-complexity Maximum Likelihood Decoding Algorithm for Tail-biting Convolutional Codes[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1575-1579. doi: 10.11999/JEIT141459
Authors:Wang Xiao-tao  Liu Zhen-hua
Abstract:
For a long time, the circularity of the tail-biting trellis is ignored in conventional decoding algorithms of Tail-Biting Convolutional Codes (TBCC). This kind of algorithm starts decoding from the fixed location, and consequently exhibits relatively lower decoding efficiency. For the first time, this paper proves that the decoding result of the tail-biting convolutional codes is independent on the decoding starting location. It means that the Maximum Likelihood (ML) tail-biting path, which starts from any location of the tail-biting trellises, is the global ML tail-biting path. Based on this observation, a new ML decoding algorithm is proposed. The new algorithm ranks the belief-value of each location on the trellis at first, and then selects the location with the highest belief- value as the decoding starting location. Compared with other existing ML decoders, the new decoder exhibits higher convergence speed.
Keywords:Tail-biting codes  Tail-biting trellis  Circularity  Maximum Likelihood (ML) decoding
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号