首页 | 本学科首页   官方微博 | 高级检索  
     

基于三次B样条有限元法的BBMB方程数值解
引用本文:徐莹莹,周丽萍,樊强,朴光日. 基于三次B样条有限元法的BBMB方程数值解[J]. 延边大学学报(自然科学版), 2014, 0(3): 194-198
作者姓名:徐莹莹  周丽萍  樊强  朴光日
作者单位:延边大学理学院数学系,吉林延吉133002
摘    要:对空间和时间坐标分别采用三次B样条有限法和Crank-Nicolson差分法求得非线性BBMB方程的数值解,应用Von-Neumann稳定性理论证明了此方法的无条件稳定性,并且通过两个例子验证了该方法的有效性与可行性.

关 键 词:三次B样条  有限元法  Crank-Nicolson差分法  BBMB方程

A numerical solution of the BBMB equation based on cubic B-spline finite element method
XU Yingying,ZHOU Liping,FAN Qiang,PIAO Guangri. A numerical solution of the BBMB equation based on cubic B-spline finite element method[J]. Journal of Yanbian University (Natural Science), 2014, 0(3): 194-198
Authors:XU Yingying  ZHOU Liping  FAN Qiang  PIAO Guangri
Affiliation:( Department of Mathematics, College of Science, Yanbian University, Yanji 133002, China )
Abstract:A cubic B-spline finite element method for the spatial variable combined with a Crank-Nieolson scheme for the time variable is proposed to approximate a solution of Benjamin-Bona-Mahony-Burgers (BBMB) equation. Von-Neumann scheme is proposed to analyze the unconditionary stability of the present method. Finally, through two examples we demanstrate the effectiveness and feasibility of this method.
Keywords:cubic B-spline  finite element method  Crank-Nicolson difference method  BBMB equation
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号