首页 | 本学科首页   官方微博 | 高级检索  
     

混沌自适应粒子群算法在故障检测中的应用
引用本文:庞立伟 薛文虎 杨洪立. 混沌自适应粒子群算法在故障检测中的应用[J]. 计算机与数字工程, 2014, 0(3): 407-411
作者姓名:庞立伟 薛文虎 杨洪立
作者单位:[1]海军工程大学电子工程学院,武汉430033 [2]91206部队,青岛266108
摘    要:
针对舰员对装备维修能力不足的情况,论文提出了一种能够应用于便携式故障诊断仪中的故障树诊断算法.首先通过对混沌自适应粒子群算法的参数选择进行优化,使粒子能够在全局范围内进行搜索,克服了其易陷入局部最优的缺点,其次将其应用于故障树诊断算法中,并通过仿真试验证明了该方法的有效性.

关 键 词:便携式故障诊断仪  故障树诊断  混沌自适应粒子群算法  参数优化

Application of Chaos Adaptive Particle Swarm Optimization Algorithm in Fault Diagnosis
PANG Liwei,XUE Wenhu YANG Hongli. Application of Chaos Adaptive Particle Swarm Optimization Algorithm in Fault Diagnosis[J]. Computer and Digital Engineering, 2014, 0(3): 407-411
Authors:PANG Liwei  XUE Wenhu YANG Hongli
Affiliation:1. Electronics Engineering College, Naval University of Engineering, Wuhan 430033) (2. No. 91206 Troops of PLA, Qingdao 266108)
Abstract:
Aiming at the lack of maintenance ability of warship crews, a fault tree diagnosis algorithm(TFA) is presen- ted which is used in portable fault diagnosis instrument. First, the paramelers of chaos adaptive particle swarm optimization (PSO) algorithm are optimized, so the particles can search the optimal solution in whole situation, which overcomes the drawback of easy to fall into local optimum. Secondly, the PSO is used in to TFA, and a simulation test shows the effective ness of this method.
Keywords:portable fault diagnosis instrument   fault tree diagnosis algorithm   chaos adaptive particle swarm optimi-zation algorithm   parameter optimization
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号