首页 | 本学科首页   官方微博 | 高级检索  
     


Studies on improving the performance of rubber seed oil fuel for diesel engine with DEE port injection
Authors:V. Edwin Geo  G. Nagarajan
Affiliation:a Department of Mechanical Engineering, GKM College of Engineering and Technology, Chennai 600063, India
b Department of Mechanical Engineering, Anna University, Chennai 600025, India
c Department of Mechanical Engineering, Indian Institute of Technology, Chennai 600036, India
Abstract:Use of vegetable oils in diesel engines leads to a marginally inferior performance and higher smoke emissions due to their high viscosity and carbon residue. The performance of vegetable oils can be improved by injecting a small quantity of diethyl ether (DEE) along with air. The main objective of this study is to improve the performance, emission and combustion characteristics of a direct injection diesel engine fuelled with rubber seed oil (RSO) through DEE injection at different flow rates of 100, 150 and 200 g/h. A single cylinder diesel engine with rated output of 4.4 kW at 1500 rpm was converted to operate in the DEE injection mode. DEE was injected into the intake port during suction stroke, while rubber seed oil was injected directly inside the cylinder at the end of compression stroke. The injection timing of DEE was optimized for this mode of operation. Results indicate that the brake thermal efficiency of the engine improves from 26.5% with neat RSO to a maximum of 28.5% with DEE injection rate of 200 g/h. Smoke reduces from 6.1 to 4 BSU with DEE injection at the maximum efficiency flow rate. Hydrocarbon and carbon monoxide emissions are also less with DEE injection. There is an increase in the NOx emission from 6.9 g/kWh to 9.3 g/kWh at the optimum DEE flow rate. DEE injection with RSO shows higher peak pressure and rate of pressure rise compared to neat RSO. Heat release rate indicates an increase in the combustion rate due to the reduced ignition delay and combustion duration with DEE injection.
Keywords:Diethyl ether   Rubber seed oil   Alternative fuels   Smoke emission and combustion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号