首页 | 本学科首页   官方微博 | 高级检索  
     

改进的基于用户的协同过滤算法
引用本文:张世显,李平. 改进的基于用户的协同过滤算法[J]. 长春理工大学学报(自然科学版), 2017, 0(6): 131-135
作者姓名:张世显  李平
作者单位:长春理工大学 计算机科学与技术学院,长春,130022
摘    要:
在推荐系统中,协同过滤算法是应用最广泛和最成熟的推荐算法之一。但是传统的协同过滤算法,在计算用户之间的相似度和评分推荐两个指标上存在着很多不足之处。通过决策树策略找寻了评分和共现值之间的规则,有效的改善了Salton相似度的准确性。同时,根据艾宾浩斯遗忘规律得到启发,引入了时间模型作为评分的权重,有效的解决了用户的兴趣迁移。在仿真实验中,测试了在不同邻居个数下传统算法和改进算法的平均绝对误差。实验证明,改进的协同过滤算法能够降低预测评分的平均绝对误差,提高推荐的准确率。

关 键 词:协同过滤  个性化推荐  Salton相似度  兴趣迁移

Improved Collaborative Filtering Algorithm Based on User
Abstract:
Collaborative filtering algorithm is one of the most widely used and most mature recommendation algorithms in recommender systems. But the traditional collaborative filtering algorithm has many shortcomings in calculating the similarity between users and the recommendation of two indicators. In this paper,the decision tree strategy is used to find the rules between the score and the total present value,which can effectively improve the accuracy of the Salton similarity. At the same time,according to Ebbinghaus's forgetting rule,the time model is introduced as the weight of the score,which can effectively solve the migration of user's interest. In simulation experiments,the average absolute error between the traditional algorithm and the improved algorithm is tested under different neighbor numbers. Experi-mental results show that the improved collaborative filtering algorithm can reduce the average absolute error of predic-tion score and improve the accuracy of recommendation.
Keywords:collaborative filtering  personalized recommendation  Salton similarity  interest transfer
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号