首页 | 本学科首页   官方微博 | 高级检索  
     


Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer‐based Solar Cells: Time‐Resolved Microwave Conductivity and Theory
Authors:Jordan C Aguirre  Christopher Arntsen  Samuel Hernandez  Rachel Huber  Alexandre M Nardes  Merissa Halim  Daniel Kilbride  Yves Rubin  Sarah H Tolbert  Nikos Kopidakis  Benjamin J Schwartz  Daniel Neuhauser
Affiliation:1. Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA;2. Chemical and Nanoscience Center National Renewable Energy Laboratory, Golden, CO, USA
Abstract:The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well‐connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash‐photolysis time‐resolved microwave conductivity (TRMC) experiments, and space‐charge‐limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility in conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so‐called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self‐assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl‐C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near‐spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.
Keywords:electron mobility  solar cells  conjugated polymers  fullerene networks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号