摘 要: | 为解决河流遥感图像分割效果较差且交并比较低的问题,提出了基于深度神经网络的河流遥感图像分割方法。通过对高空间分辨率的河流遥感图像数据集的分析,预处理河流遥感图像,解决数据集中存在的弱标签问题;采用卷积编码-解码网络构建深度神经网络的特征提取模型,并运用KNN算法实现河流遥感图像的高精度分割;最后以重庆市嘉陵江2022年河流遥感图像为例进行验证。实验结果表明:所提方法能够保留分割后的图像细节特征,且图像分割交并比较高,为0.94。所提方法能够对河流遥感图像进行高精度分割,可为水资源管理和环境保护等方面提供技术支持。
|